Create a free account and view content that fits your specific interests in structural engineering __Learn More__

Contents [show]

__The problem:__

Determine the second moments of area, I_{xx} and I_{yy}, for the sections indicated in Figures 2a to 2e.

__Tip__: It is given that the total height and the area of the 457 x 152 x 52 UB section are: h = 449.8mm and A = 66.6cm^{2}, respectively. Furthermore, the second moments of area are I_{xx} = 21400cm^{4} and I_{yy} = 645cm^{4}.

__The solution:__

a) i) y_{1 }and y_{2}

y_{1 }= 360 + 7.5 – 273.75 = 93.75mm_{}

y_{2 }= 273.75 – 180 = 93.75mm

ii) I_{xx}

I_{xx} = (240 x 15^{3})/12 + 240 x 15 x 93.75^{2} + (10 x 360^{3})/12 + 360 x 10 x 93.75^{2}_{ }= 102.23 x 10^{6} mm^{4}

iii) I_{yy}

I_{yy} = (15 x 240^{3})/12 + (360 x 10^{3})/12 = 17.31 x 10^{6} mm^{4}

b) i) y_{1}, y_{2 }and y_{3}

_{}

y_{1 }= 15 + 400 + 7.5 – 234.66 = 187.84mm_{}

y_{2 }= 234.66 – (15+200) = 19.66mm

y_{3 }= 234.66 – 7.5 = 227.16mm

ii) I_{xx}

I_{xx} = (240 x 15^{3})/12 + 240 x 15 x 187.84^{2} + (8 x 400^{3})/12 + 400 x 8 x 19.66^{2}_{ }+ (180 x 15^{3})/12 + 180 x 15 x 227.16^{2}_{ }= 310.37 x 10^{6} mm^{4}

iii) I_{yy}

I_{yy} = (15 x 240^{3})/12 + (400 x 8^{3})/12 + (15 x 180^{3})/12 = 24.59 x 10^{6} mm^{4}

c) i) y_{1}, y_{2}, y_{3} and y_{4}

_{}

y_{1 }= 15 + 300 + 12 + 5 - 216.63 = 112.37mm_{}

y_{2 }= 12 + 300 + 6 - 216.63 = 101.37mm

y_{3 }= 216.63 – (12+150) = 54.63mm

y_{4 }= 216.63 – 6 = 210.63mm

ii) I_{xx}

I_{xx} = (350 x 10^{3})/12 + 350 x 10 x 112.37^{2} + (200 x 12^{3})/12 + 200 x 12 x 101.37^{2}_{ }+ (8 x 300^{3})/12 + 8 x 300 x 54.63^{2}_{ }+ (200 x 12^{3})/12 + 200 x 12 x 210.63^{2}= 200.58 x 10^{6} mm^{4}

iii) I_{yy}

I_{yy} = (10 x 350^{3})/12 + 2 x (12 x 200^{3})/12 + (300 x 8^{3})/12 = 51.74 x 10^{6} mm^{4}

^{}

d) i) x_{1}, x_{2}, y_{1}, y_{2} and y_{3}

_{}

x_{1 }= 110 – 7.5 = 102.50mm_{}

x_{2 }= 110 – 7.5 = 102.50mm_{}

y_{1 }= 449.8 + 4 -303.51 = 150.29mm_{}

y_{2 }= 449.8 - 41 -303.51 = 105.29mm_{}

y_{3 }= 303.51 – (449.8/2) = 78.61mm

ii) I_{xx}

I_{xx} = (220 x 8^{3})/12 + 220 x 8 x 150.29^{2} + 2 x (15 x 82^{3})/12 + 15 x 82 x 105.29^{2}_{ }+ (21400 x10^{4}) + 6660 x 78.61^{2}= 323.57 x 10^{6} mm^{4}

iii) I_{yy}

I_{yy} = (8 x 220^{3})/12 + 2 x [(82 x 15^{3})/12 + (82 x 15 x 102.5^{2})] + 645 x 10^{4} = 39.44 x 10^{6} mm^{4}

e) i) x_{1}, x_{2}, y_{1}, y_{2} and y_{3}

_{}

x_{1 }= 1200/2 + 5 = 605mm_{}

x_{2 }= 1200/2 + 5 = 605mm_{}

y_{1 }= 12 + 500 + 10 – 330.56 = 191.44mm_{}

y_{2 }= 330.56 – (12 +250) = 68.56mm

y_{3 }= 330.56 – 6 = 324.56mm

ii) I_{xx}

I_{xx} = (1420 x20^{3})/12 + 1420 x 20 x 191.44^{2} + 2 x (10 x 500^{3})/12 + 10 x 500 x 68.56^{2}_{ }+ (1220 x12^{3})/12 + 1220 x 12 x 324.56^{2}= 2839.47 x 10^{6} mm^{4}

iii) I_{yy}

I_{yy} = (20 x 1420^{3})/12 + 2 x [(500 x 10^{3})/12 + (10 x 500 x 605^{2})] + (12 x 1220^{3})/12 = 10248.30 x 10^{6} mm^{4}

Structural AnalysisTruss deflection using the unit load methodMethod of sectionsBending stress in a beam elementOverhanging beam: shear force and bending moment calculationCalculation of the cross-sectional area and the position of centroid

Buckling

1 pages

Confinement (structural)

Elasticity and Inelasticity

Fatigue

Moment distribution

Nonlinear analysis

Structural stability

1 pages

The problem: Determine the cross-sectional area and the position of the centroid for the sectio...

Calculate the reactions and member forces. Solution We calculate the reactions. ...

Calculate the reactions and member forces. Solution We calculate the reactions. Section 1 0...

Find the maximum moment of the above beam which is subjected to triangular vertical load. SOLUTION:...

Calculate the equation of the elastic curve .Determine the pinned beam’s maximum deflection. EI cons...

Calculate the member diagrams. Solution We have already calculated the external beam rea...

Please determine the forces in the members BC, GC and GF of the pin-jointed plane truss shown in F...

Calculate the distance x for locating point load so that the moment on the beam at point B is zero....

Calculate the maximum allowable shear force Vmax for the girder. The welded steel girder is having...

Jun, 18, 2019 | Education #### Calculate the Maximum Shear Stress

Sep, 16, 2022 | Education #### Diaphragms

Aug, 05, 2019 | Education #### How to calculate yield strength

Aug, 28, 2023 | Education #### Truss deflection using the unit load method

Sep, 16, 2022 | Education #### Structural stability

Mar, 01, 2024 | Education #### Overhanging beam: shear force and bending moment calculation

Jun, 29, 2023 | Education #### Nominal flexural strength of a reinforced concrete beam

Sep, 08, 2015 | Education #### Calculation Example: Axial Force On A Column